PERAMIHO GIRLS' SECONDARY SCHOOL

FORM THREE FITNESS TEST – SERIES 3

032 CHEMISTRY

MARKING SCHEME

August, 2024

A student required to answer all questions in sections **A** and **B** and two questions in section **C**.

SECTION A: (16 Marks)

1. Answers

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)	(viii)	(ix)	(x)
С	С	В	В	С	D	С	С	В	D

(10 marks)

2. Answers

List A	(i)	(ii)	(iii)	(iv)	(v)	(vi)
List B	Н	G	Α	Е	В	D

(06 marks)

SECTION B: (54 Marks)

3. (a) • **Boiling**

This method is used to remove **only temporary** hardness of water.

When temporary hard water is boiled calcium and magnesium hydrogen carbonate dissolved in it decomposes to form carbonates, water and carbon dioxide gas.

$$Ca(HCO_3)_2(aq) \xrightarrow{Heat} CaCO_3(s) + H_2O(l) + CO_2(g)$$

$$Mg(HCO_3)_2(aq) \xrightarrow{Heat} MgCO_3(s) + H_2O(l) + CO_2(g)$$

Distillation

This process relies on evaporation followed by condensation to purify hard water. This method softens both temporary and permanent hardness of water.

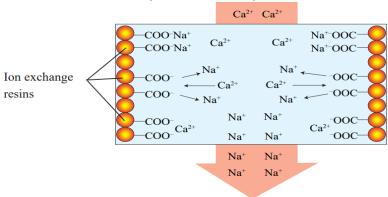
Adding calcium hydroxide (lime water)

This method is used to remove only temporary hardness of water. **Adding calcium hydroxide (lime water) precipitate out** carbonate of magnesium or calcium. $Ca(HCO_3)_2(aq) + Ca(OH)_2(aq) \longrightarrow 2CaCO_3(s) + 2H_2O(l)$

Adding washing soda (Na₂CO₃)

This method is used to remove both permanent and temporary hardness.

Washing soda precipitates out carbonates of calcium or magnesium.


$$\begin{split} & \mathsf{Ca}(\mathsf{HCO_3})_2(aq) + \mathsf{Na_2CO_3}(aq) & \longrightarrow \mathsf{CaCO_3}(s) + \mathsf{NaHCO_3}(aq) \\ & \mathsf{CaSO_4}(aq) + \mathsf{Na_2CO_3}(aq) & \longrightarrow \mathsf{CaCO_3}(s) + \mathsf{Na_2SO_4}(aq) \\ & \mathsf{MgSO_4}(aq) + \mathsf{Na_2CO_3}(aq) & \longrightarrow \mathsf{MgCO_3}(s) + \mathsf{Na_2SO_4}(aq) \end{split}$$

Use of ion exchangers

The resin in ion exchanger contains sodium ions that are weakly attached on it, which are displaced by calcium and magnesium ions when hard water pass through and this makes water to become soft.

Chemical equation: $CaSO_4(aq) + Na_2Y(aq) \longrightarrow CaY(s) + Na_2SO_4(aq)$ (Y is the negatively charged ion exchanger)

Hard water (with Ca²⁺ ions) flows into ion exchanger

Soft water (with Na⁺ ions) flows out from ion exchanger

Addition of aqueous ammonia

This method is used to remove both temporary and permanent hardness of water. When aqueous ammonia is added to temporary hard water, carbonate of magnesium or calcium precipitate out.

$$2NH_4OH(aq) + Mg(HCO_3)_2(aq) \longrightarrow MgCO_3(s) + (NH_4)_2CO_3(aq) + 2H_2O(l)$$

When aqueous ammonia is added to permanent hard water, hydroxide of magnesium or calcium precipitate out.

$$2NH_4OH(aq) + MgSO_4(aq) \longrightarrow Mg(OH)_2(s) + (NH_4)_2SO_4(aq)$$
 (@01 = 03 marks)

- (b) Three (3) disadvantages of using hard water are:
 - Wastage of more soap
 - Stains in clothes and utensils.
 - It spoils the quality some special finishes on clothes.
 - Increase boiling point of water hence more fuel is used to boil it.
 - Impacts on hair and skin; when hair is cleaned with hard water it becomes dry and rough and also hard water makes the skin dry and itchy.
 - Reduction of the lifespans of appliances.

(@01 = 03 marks)

- (c) Advantage of using hard water
 - It provides useful calcium for growth of bones and teeth.
 - Formation of lime scale which prevent pipes or tap from rust.
 - Better for brewing beer because calcium ion promotes flavour.
 - Toxic lead compounds in lead water pipes are less soluble in hard water.
 - Help in the formation of strong shells in some aquatic animals.
 - It tastes better due to dissolved compounds.

(@01 = 03 marks)

- **4.** (a) The Le Chatelier's principle states that, if a system at equilibrium is subjected to a change, processes will occur which tend to counteract the change imposed.

 The principle can also be stated as, if a stress is applied to a system at equilibrium, the system re-adjusts, to reduce the effect of the stress imposed.

 (01 mark)
 - (b) The reaction is said to be at equilibrium if the rate of forward reaction and backward reaction are equal. (02 marks)
 - (c) Given the reaction: $2SO_2(g) + O_2(g) = 2SO_3(g) \Delta H = -94.9 \text{ kJ/mol}$
 - (i) Since the reaction is exothermic, the conversion of sulphur dioxide to sulphur trioxide is favoured by low temperatures. Hence the temperature should be low.
 (01 mark)
 - The conversion of sulphur dioxide to sulphur trioxide is therefore favored by high pressure because the reaction proceeds with decrease in number of moles.

(01 mark)

- (ii) It is unfavorable to work under very high pressure because high pressure is expensive and difficult to maintain.(01 mark)
 - It is unfavorable to work under very low temperature because at very low temperature, the rate of reaction is very slow. (01 mark)
- (iii) Vanadium pentoxide (V_2O_5) or platinum (Pt) is used as a catalyst. **(02 marks)**
- **5.** (a) (i) Ionic (electrovalent) bond.

(01 mark)

(ii) One electron.

(02 marks)

(iii) Group I.

(02 marks)

- (b) (i) A cation has small size than its parent atom because when electrons are removed the remaining fewer electrons in a cation experience stronger nuclear attractive forces due to weaker electron-electron repulsion. (02 marks)
 - (ii) Because anion has gained one or more electrons resulting in excess negatively charged particles. (02 marks)
- **6.** (a) Neon does not react with sodium because neon is a noble gas with a full outer electron shell, making it stable and unreactive. On other hand sodium is very reactive; it loses electron easily.

 (03 marks)
 - (b) (i) $Na_2S_2O_3(aq) + 2HCI(aq) \longrightarrow 2NaCI(aq) + S(s) + SO_2(g) + H_2O(l)$ (02 marks)

(ii) Sulphur (02 marks)

(iii) • Net ionic equation:

$$S_2O_3^{2-}(aq) + 2H^+(aq) \longrightarrow S(s) + SO_2(q) + H_2O(l)$$

(01 mark)

• Spectator ions: Na⁺ and Cl⁻ ions

(01 mark)

- 7. (a) (i) After five minutes the colour of the solution become dark purple due to diffusion property of KMnO₄ particles. (01 mark)
 - (ii) After several hours the colour of the solution may change to purple shade; that is lighter than the initial colour. This is because the solution of water and KMnO₄ is made up of very tiny particles which get dispersed and spread amongst themselves.

 (01 mark)
 - (iii) The two processes which have taken place are; Diffusion and dispersion.

(02 marks)

- (iv) From that experiment two conclusions that can be made are;
 - Matter is made up of tiny particles
 - Particles of matter are constantly moving.

(02 marks)

- (b) **Given:** Mass of potassium nitrate (KNO₃) = 50 g
 - Volume of water = 250 cm³
 - Density of water, $\rho_w = 1 \text{ g/cm}^3$

From the formula

Solubility of salt (solute) =
$$\frac{100 \text{ cm}^3 \text{ x Mass of solute in grams (g)}}{\text{Volume of solvent (cm}^3)}$$
 (01 mark)

Solubility of potassium nitrate = $\frac{100 \text{ cm}^3 \text{ x } 50 \text{ g}}{250 \text{ cm}^3}$ = 20 g

Therefore, the solubility of KNO₃ is 20 g/100 grams of water (02 marks)

- **8.** (a) (i) Energy value of a fuel; is the total amount of energy produced/liberated by the complete combustion of unit mass of the fuel in air (oxygen). (01 mark)
 - (ii) A good fuel should have high energy value.
 - A good fuel should burn with moderate velocity.
 - A good fuel should have average ignition point.
 - A good fuel should have low content of non-combustible materials.
 - A good fuel should not produce poisonous gases during combustion.
 - A good fuel should have high pyrometric burning effect
 - A good fuel should be readily available in large quantities.
 - A good fuel should be ease to transport, handle and store.
 - A good fuel should not have harmful effect in the environment.
 - A good fuel should be affordable to most people.

(@01 = 04 marks)

- (b) **Data given**
 - Initial temperature, θ_1 = 25.4 °C = 24.7 + 273 = 298.4 K
 - Final temperature, $\theta_2 = 31.2$ °C = 31.2 + 273 = 304.2 K
 - Mass of ethanol, $M = (59.46 56.69) g = 2.77 g = 2.77 x <math>10^{-3} kg$
 - Volume of water, $V = 200 \text{ cm}^3 = 2 \times 10^{-4} \text{ m}^3$
 - Mass of water M_w = Density (p) x volume (v) = 1000 kg/m³ x 2 x 10⁻⁴ m³ = 0.2 kg
 - Required: Heat value of ethanol? (01 mark)

From:

Heat value =
$$\frac{M_W \times C_W \times \Delta T}{M}$$
 (01 mark)

Heat value =
$$\frac{0.2 \text{ kg x 4.18 kJkg}^{-1} \text{K}^{-1} \text{ x (304.2 K - 298.4 K)}}{2.77 \text{ x } 10^{-3} \text{ kg}} = 1750.4693 \text{ kJ/kg}$$

Heat value = 1750.4693 kJ/kg

Therefore, the heat value of ethanol = 1750.4693 kJ/kg

(02 marks)

SECTION C: (30 Marks)

9. (a)

(i)	Compound	Name	Formula/ Symbol	
	M	Zinc	Zn	(
	P	Zinc oxide	ZnO	
	Q	Zinc oxide	ZnO	
(ii)	Substance	Name	Formula/ Symbol	
	N	Zinc chloride	ZnCl ₂	
	0	Zinc hydroxide	Zn(OH) ₂	(0
	Т	Hydrogen gas	H ₂	

- (b) Reaction in step 1: $Zn(s) + 2HCl(aq) \longrightarrow ZnCl_2(aq) + H_2(g)$.
 - Reaction in step 2: $ZnCl_2(aq) + 2NaOH(aq) \longrightarrow Zn(OH)_2(s) + 2NaCl(aq)$.
 - Reaction in step 3: $Zn(OH)_2(s) \xrightarrow{Heating} ZnO(s) + H_2O(g)$. (@02= 06 marks)

(c)

Sodium carbonate	Sodium bicarbonate
Sodium carbonate is commonly	Sodium bicarbonate is known as
known as washing soda.	baking soda.
Sodium carbonate is used in	Sodium bicarbonate is often used in
industrial applications like glass	cooking, baking and as an antacid.
manufacturing.	
Sodium carbonate is more alkaline	Sodium bicarbonate is less alkaline
(pH around 11) compared to	(pH around 8.4) compared to sodium
sodium bicarbonate (pH around 8.4).	carbonate (pH around 11).
Sodium carbonate is more soluble in	Sodium bicarbonate is less soluble in
water than sodium bicarbonate.	water than sodium carbonate.
Sodium carbonate decomposes at a	Sodium bicarbonate decomposes at
higher temperature (around 851 °C).	low temperature (around 50 °C).

(@01 = 03 marks)

10. (a) From dilution law:
$$M_1V_1 + M_2V_2 = MdVd$$
 (01 mark)
 $(10M \times V_1) + (3M \times V_2) = MdVd$
But $Vd = 2000 \text{ cm}^3$ and $Vd = V_1 + V_2$
Then: $V_1 = Vd - V_2$
 $10 \times (Vd - V_2) + (3 \times V_2) = Md \times 2000$
 $10Vd - 10V_2 + 3V_2 = 2000Md$
 $10Vd - 7V_2 = 2000Md$ (01 mark)
But: $Vd = 2000 \text{ cm}^3$
 $10Vd - 7V_2 = 2000Md$
 $V2 = 1142.86 \text{ cm}^3$

Then,
$$V_1 = Vd - V_2$$

 $V_1 = 2000 \text{ cm}^3 - 1142.86 \text{ cm}^3 = 857.14 \text{ cm}^3$

Therefore, 857.14 cm³ of 10 M HCl should be mixed with 1142.86 cm³ of 3 M HCl to prepare 2000 cm³ of 6 M HCl solution. (01 mark)

(b) **Given**: Concentration of solution = 10 % weight by volume Molar mass of NaOH = 40 g/mol10 % w/v means 10 g of NaOH solute in 100 cm³ of solution (01 mark)

From: Molarity =
$$\frac{\text{Concentration (g/dm}^3)}{\text{Molar mass (g/mol)}}$$
 (01 mark)

Molarity = $\frac{10 \text{ g}}{0.1 \text{ dm}^3 \text{ x (40 g/mol)}} = 2.5 \text{ mol/dm}^3$

Therefore, the molarity of 10 % (w/v) of sodium hydroxide solution is 2.5 mol/dm³ (01 mark)

- (c) Given: Mass of ammonia = 2 g = 0.1176 moles Mass of oxygen = 4 g = 0.125 moles
 - (i) Required to determine the limiting reactant:

$$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(l)$$

4 moles of $NH_3 \equiv 5$ moles of O_2 For NH₃: X moles of NH₃ \equiv 0.125 moles of O₂

X = 0.1 moles of NH₃ required to react completely

(But we are given 0.1176 moles of NH₃)

For O₂: 4 moles of NH₃ \equiv 5 moles of O₂ 0.1176 moles of NH₃ \equiv X moles of O₂ X = 0.147 moles of O_2 required to react completely (But we are given 0.125 moles of O_2)

Therefore, oxygen is the limiting reactant because the required amount (0.147 moles) is greater than the given amount (0.125 moles)

(03 marks)

(ii) NH₃ present in excess.

Excess moles of ammonia = (0.1176 - 0.1) moles = 0.0176 moles (03 marks)

(iii) Required to calculate the mass of nitrogen monoxide (NO)

The mass of nitrogen dioxide gas produced depend on oxygen (limiting reactant)

From the reaction:
$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(f)$$

5 moles of
$$O_2 \equiv 4$$
 moles of NO

0.125 moles of $O_2 \equiv X$ moles of NO

$$X = 0.1$$
 mole of NO will be produced

(02 marks)

From: Number of moles = $\frac{\text{Mass}}{\text{Molar mass}}$

Mass = Number of moles x Molar mass

Mass = 0.1 mole x 30 g/mol = 3.0 g

Therefore, the mass of nitrogen monoxide (NO) produced = 3.0 g
(01 mark)

11. Volumetric analysis is the analytical method that involve measurement of the volume of the solution required to react completely with a definite volume of another solution. The apparatus used in volumetric analysis are always clean in order to avoid contamination that may interfere the reactions. (02 marks)

Volumetric analysis is used in different fields as explained below;

Household Cleaning Products: Volumetric analysis is used to determine the concentration of active ingredients in household cleaning products like bleach or disinfectants.

Food and Beverage Industry: It is used to measure the acidity or alkalinity of food products, such as determining the acid content in fruit juices.

Water Treatment: Volumetric analysis helps in monitoring and controlling the levels of contaminants in water treatment processes, ensuring water quality standards are met. To determine the amount of salts in water

Pharmaceutical Industry: Used to analyze drug formulations to ensure accurate dosages and concentrations in medications.

Quality Control in Manufacturing: Volumetric analysis is employed to check the purity and concentration of chemicals used in various manufacturing processes.

Environmental Monitoring: It is utilized to analyze pollutants in air, soil, and water samples for environmental impact assessments and regulatory compliance.

Medicine: Determination of the concentration of glucose in a blood sample. Determination of amount of acid which can be neutralized by ant-acid tablet

Manufacturing industries: To determine amount of acetic acid in vinegar. Table vinegar should have a minimum amount of 5%. To determine the acidity of fruit juices. To determine the concentration of household ammonia.

Agriculture: To determine composition of different substances in the soil such as; nitrogen, potassium, and phosphorus. To determine soil pH.

Commercial uses: To determine the percentage of iron content in an iron ore. Determination of salt content in brine. To determine the percentage by mass of copper in copper salt. (@02 = 12 marks)

In general; volumetric analysis it is a valuable analytical technique used in chemistry to determine the concentration of a substance in a solution. Volumetric analysis relies on the accurate measurement of volumes of solutions involved in a chemical reaction to determine unknown concentrations. It is widely used in various industries, research laboratories, and educational settings for quantitative analysis purposes. *(01 mark)*

By: Mwanda A.J.

dottoalphonce@gmail.com 0767660163/0786423533